

Better Diffusion Models Further Improve Adversarial Training

Zekai Wang^{*1}, Tianyu Pang^{*2}, Chao Du², Min Lin², Weiwei Liu¹, Shuicheng Yan²

¹Wuhan University ²Sea AI Lab

- Previous SOTA in adversarial training (Rebuffi et al.) - \geq
- AT requires more data (Schmidt et al.)
- External datasets are not always available
- Use DDPM (FID 3.17 on CIFAR-10)
- Recent FID: 1.97 by EDM

Sea Allab

Can better diffusion models further improve adversarial training?

Replace DDPM with EDM (Karras et al.)

class-conditional generation, 50 million generated images

 \oslash **ROBUST**BENCH We achieve **SOTA** results on A standardized benchmark for adversarial robustness with a large improvement!

		CIFAR-10 l_{∞}	CIFAR-10 l_2	CIFAR-100 l_{∞}	SVHN l_{∞}	TinylmageNet l_∞			
	Clean +4.51%		+3.13%	+11.66%	+1.17%	+4.24%			
Clean Accuracy (%)	Robust +4.58%		+4.44% +8.03%		+2.92%	+4.64%			
	CIFAR-1	$10(\ell_{\infty}, \epsilon = 8/255)$	CIFA	R-10 ($\ell_2, \epsilon = 128/255$)	CIFA	AR-100($\ell_{\infty}, \epsilon = 8/255$)			
		(WRN-28-10)	0-16) 05 00 00 00 00 00	(WRN-28-10)(WRN-	70-16) (0) (0) (0) (0) (0) (0) (0) (0	(WRN-70-1) WRN-28-10)			
			Clean Acc		Clean Acc				
	2 52 54 56 58 60 Robu:	2020 ● 2021 ● 2022 ★Our 0 62 64 66 68 70 st Accuracy (%)	72 85 72 74 76 R			2020 ● 2021 ● 2022 ★ Ours 32 34 36 38 40 42 44 Robust Accuracy (%)			

Even beat the results using external datasets

With the same batch size, the training time per epoch of our method is equivalent to the w/o-generateddata baseline (only extra cost for data generation)

Dataset	Method	External	Clean	AA
CIFAR-10 $(\ell_{-1}, \epsilon = 8/255)$	Rank #1	× ✓	88.74 92.23	66.11 66.58
(**************************************	Ours	×	93.25	70.69
CIFAR-10 $(\ell_2, \epsilon = 128/255)$	Rank #1	× ✓	92.41 95.74	80.42 82.32
(02, 0 120/200)	Ours	X	95.54	84.86
CIFAR-100 $(\ell_{\infty}, \epsilon = 8/255)$	Rank #1	× ✓	63.56 69.15	34.64 36.88
(**************************************	Ours	×	75.22	42.67

Lower FID is better Conditional > Unconditional

	Step	$\mathrm{FID}\downarrow$	Clean	PGD-40	AA
	5	35.54	88.92	57.33	57.78
	10	2.477	90.96	66.21	62.81
	15	1.848	91.05	64.56	63.24
Class and	20	1.824	91.12	64.61	63.35
Class-collu.	25	1.843	91.07	64.59	63.31
	30	1.861	91.10	64.51	63.25
	35	1.874	91.01	64.55	63.13
	40	1.883	91.03	64.44	63.03
	5	37.78	88.00	56.92	57.19
	10	2.637	89.40	62.88	61.92
	15	1.998	89.36	63.47	62.31
Uncond	20	1.963	89.76	63.66	62.45
Unconu.	25	1.977	89.61	63.63	62.40
	30	1.992	89.52	63.51	62.33
	35	2.003	89.39	63.56	62.37
	40	2.011	89.44	63.30	62.24

Models perform better with a longer training process

Generated	Epoch	Best epoch	Clean			PGD-40			AA		
			Early	Last	Diff	Early	Last	Diff	Early	Last	Diff
×	400 800	86 88	84.41 83.60	82.18 82.15	$-2.23 \\ -1.45$	55.23 53.86	46.21 45.75	$-9.02 \\ -8.11$	54.57 53.13	44.89 44.58	$-9.68 \\ -8.55$
20M	400 800 1200 1600 2000 2400	370 755 1154 1593 1978 2358	91.27 92.08 92.43 92.51 92.41 92.58	91.45 92.14 92.32 92.61 92.55 92.54	+0.18 +0.06 -0.11 +0.10 +0.14 -0.04	64.65 66.61 67.45 68.05 68.32 68.43	64.80 66.72 67.64 67.98 68.30 68.39	+0.15 +0.11 +0.19 -0.07 -0.02 -0.04	63.69 65.66 66.31 67.14 67.22 67.31	63.84 65.63 66.60 67.10 67.17 67.30	$\begin{array}{r} +0.15 \\ +0.03 \\ +0.29 \\ -0.04 \\ -0.05 \\ -0.01 \end{array}$

Alleviate overfitting

Sensitivity study on hyper-parameters

PGD-40

64.61

64.54

64.34

64.07

64.39

64.41

Batch	Clean	PGD-40	Δ Δ	LS	Clean	PGD-40	AA	β	Clean	PGD-40	AA
Size	Cican	100-40	1111			(4.22	(2.92	2	92.46	63.66	62.32
128	01.12	64 77	63.00	0	90.40	04.32	02.83	3	91.83	64.18	63.03
120	91.12	04.77	03.90	0.1	91.12	64.61	63.35	4	91.30	64.27	63.11
256	91.15	65.76	64.72	0.2	01 22	61.20	62.27	5	91.12	64.61	63.35
512	91.81	66.15	65.21	0.2	91.23	04.38	05.27	6	00.77	64.42	63.23
1024	91 90	66.21	65 29	0.3	91.06	64.35	63.12	7	00.77	64.51	62.20
1024	51.50	00.21	05.27	0.4	00.00	64.15	60.07	/	90.39	64.51	03.29
2048	91.98	66.54	65.50	0.4	90.82	64.15	62.87	8	90.25	64.34	63.19

Batch size

Clean

91.12

91.25

91.08

91.23

91.14

91.08

Methed

Common

Cutout

CutMix

IDBH

AutoAugment

RandAugment

Label smoothing

Data augmentation

AA

63.35

63.30

62.81

62.86

63.12

63.24

 β in TRADES

Find more interesting conclusions in our paper!

n-robust classifier	eudo-labels
→ Unconditional	Generated

Robust classifier

Training dataset

generative model

Non-r